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Abstract: In order to improve the performance of the strong unscented Kalman filter (STUKF) for 
maneuvering target tracking and shorten the time required by the algorithm, a fast multi-fading 
STUKF algorithm with time-varying noise estimator is proposed. Considering the strategy of fading 
factor, the introduction position and reference method of the fading factor are improved. The filter 
gain and covariance matrix are adjusted adaptively. The process noise and observed noise with 
unknown statistical properties are estimated by adding a time-varying noise estimator to emphasize 
the importance of the adjacent data. The simulation results of various algorithms for the 
maneuvering target motion model are compared. The results show that the new filtering algorithm 
can track the maneuvering target better, improve the operating efficiency of UKF and the tracking 
accuracy. In the case of inaccurate noise statistics, the problem of filtering accuracy divergence is 
overcome, excessive calculation amount is avoided, and more efficient filtering performance is 
obtained. 

1. Introduction 
As an important optimal filtering theory, Kalman Filter (KF) is widely used in navigation, target 

tracking, communication and signal processing, fault diagnosis and detection. KF is calculated in 
recursive form and can estimate using limited measurement information containing noise. It has a 
small amount of data storage and has a lower system load than other detection methods. It is often 
used to predict the trend of dynamic systems. In the field of target tracking, the maneuvering target 
tracking technology based on KF and its extension algorithm is used in military and civilian 
equipment widely, which is of great significance. Tracking of the target's motion trajectory in 
dynamic systems reliably and accurately is one of the hotspots in this field. The follow-up of filtering 
technology provides more possibilities for the development of the target tracking field. In order to 
adapt to nonlinear system, algorithms such as extended Kalman filter (EKF), volumetric Kalman 
filter (CKF) and unscented Kalman filter (EKF) are proposed.  

After continuous improvement, KF has the ability to adjust adaptively, which can better overcome 
the limitations of the system with many unknowns and insufficient information. Gao et al. use the 
equivalent weighting matrix and adaptive factor adjustment overcome the interference caused by the 
model error in the prediction [1]. Xia and Liu propose a filter composed of an interactive multi-
model (IMM) combined with EKF, but this combination has large amount of calculation and the 
filtering process is complicated [2]. The interacting multiple model seventh-degree cubature Kalman 
filter (IMM-7th CKF) algorithm proposed by Ran and Qiao has higher filtering accuracy, but lacks 
the consideration of real-time noise changes, making the error between state quantity and 
observation. As time increases, it eventually leads to filter divergence [3]. The autoregressive 
prediction model is incorporated into KF for state estimation, and the real-time information of the 
innovation sequence is used to calculate the process noise covariance in Jin’s literature [4]. The 
estimation accuracy is higher than the adaptive KF of the traditional discrete differential model. 
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Zhang et al. use an adaptive filter based on nonlinear CKF and covariance difference estimation to 
solve nonlinear problem [5], but as the number of filtering iterations increases, the covariance matrix 
may lose non-negative characterization and symmetry. Duan et al. use the adaptive square root 
cubature Kalman filter algorithm (SRCKF) to track the position of the model, which solves the 
numerical stability problem of CKF effectively and reduces the amount of calculation [6]. Huang et 
al. use two fading factors to adjust the error covariance matrix to form a strong robust CKF with 
good robustness [7]. Introducing the fading factor into the Kalman filter can overcome the 
shortcomings of KF's filtering accuracy when the system motion model is uncertain, and 
demonstrates the effectiveness of the strong tracking. 

In this paper, a time-varying noise estimator is introduced into the strong tracking unscented 
Kalman filter (STUKF), and the position of the fading factor is adjusted. This fast multi-fade strong 
tracking unscented Kalman filter (F-MSTUKF) with noise estimation can perform characteristic 
statistics and real-time adaptive adjustment of noise with unknown variation. Adding the adjustment 
mechanism to the UKF's prediction and update steps avoids inaccurate or even diverging filtering. 
Comparing the above methods with the UKF and extended algorithms for nonlinear systems, it 
verifies that the improved STUKF method has better adaptive ability and tracking accuracy. 

2. Fast Multi-Fade Strong Tracking Unscented Kalman Filter 
Kalman filter was only available for linear systems originally, followed by EKF for nonlinear 

applications [8]. UKF is another filtering method applied to nonlinear systems. It eliminates the way 
of linearizing the system and uses the unscented transform to process the state prediction and update 
of the system. It has higher calculation accuracy [9]. The unscented transformation is transmitted by 
means of iterative method for obtaining the mean and covariance [10]. After acquiring the sigma 
sample points and calculating the corresponding weights, the new sample points is obtained by the 
unscented transformation according to the one-step prediction of the sample points, and the new 
sample points is brought in the observation equation to predict the observed value [11]. The observed 
values of the observations are weighted and summed to obtain the predicted mean and covariance. In 
the calculation process of UKF, the linearization approximation of Taylor expansion is not needed, 
but the mean and covariance are used to match the original statistical characteristics by using a series 
of sampling points, which overcomes the shortcomings of using linearization to cause stability error. 
Therefore, the target tracking based on the UKF has higher accuracy and requires less information on 
the system.  

The filter gain is related to the bandwidth and convergence speed of the filter, which affects the 
weight of the innovation sequence in calculating the state and observation of the system. Adaptively 
adjusting the gain of the update phase according to the real-time state of the system is advantageous 
for improving the filtering accuracy. The strong tracking method uses the residual sequence to keep 
each other orthogonal to extract the information needed for system state prediction. The strong 
tracking implementation of the nonlinear system is to select an appropriate time-varying gain matrix 
to make the residual sequence orthogonal，it can be expressed as follows: 
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where ( ) ( )ˆ 1k k k kε = − −Z Z  is residual sequence. 
When the system model and the real model are different or the system has a sudden change, the 

orthogonality of the residual will be affected. Equation.1 can maintain the robustness of the strong 
tracking process and ensure the orthogonal relationship. It is necessary to reduce the amount of 
calculation in the operation steps of STUKF. Therefore, an F-MSTUKF filtering algorithm with 
noise estimation is proposed. On the basis of changing the reference position of the fading factor to 
reduce the computational complexity, the multi-fade mechanism and noise estimation are added to 
the filtering algorithm to enhance the stability of the filtering. 
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2.1 Fast STUKF. 
The idea of strong tracking introduces the fading factors into the state prediction and observation 

process of the system, adjusts the parameter adaptively in real time, reduces the influence of the old 
data pinning in the UKF, and it can improve the filtering performance effectively. According to the 
algorithm flow, the introduction of the fading factor is equivalent to repeating the calculation of 
sample points and covariance matrix in the measurement update, which increases the complexity of 
the algorithm. Reselecting the position of fading factors can reduce the extra calculation due to the 
factors, avoid the repeated execution of the same type of steps and reduce the algorithm complexity 
without affecting the accuracy of the algorithm. The position of the fading factors is adjusted to the 
observation measurement stage, and only changes the calculation of observation and covariance 
matrix. It affects the filter gain and state update indirectly [13]. The adjustments to the reference of 
fading factors is as follows: 

( ) ( ) ( ) ( ) ( )1
ˆ ˆ1 1 1 1i

k ik k k k k k k kλ +
 ′+ − + = + − +
 

Z Z Z Z
,                            (2) 

( ) ( ) ( ) ( ) ( ) ( )
2 T

1

ˆ ˆ1 1 1 1 1
k k

n
i

z z i i
i

k k k k k k k k kλ ω
=

   ′ ′= + + − + ⋅ + − + +
   ∑P Z Z Z Z R

,                           (3) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 T

1

ˆ ˆ1 1 1 1 1
k k

n
i i

x z i
i

k k k k k k k k kλ ω
=

 ′ = + + − + ⋅ + − +   ∑P X X Z Z
,                                 (4) 

where Ẑ  is mean of the predicted values of the observation; λ  stands for fading factor; P  stands 
for covariance matrix; R  is the covariance matrix of observed noise. The state covariance matrix of 
the update phase with fading factor is expressed as: 

( ) ( ) ( ) ( ) ( )T1 1 1 1 1 1
k kz zk k k k k k kλ ′+ + = + + − + +P P K P K .                              (5) 

The above method can extract the residual information more completely and use the updated 
covariance matrix to influence the prediction at the next moment. 

Since the time complexity of the step of calculating the sample point set is closely related to the 
complexity of the state vector dimension and the measurement function. For systems with higher 
state dimensions and more complex measurement functions, the optimization effect of time 
complexity is more obvious. 

2.2 Multi-fade STUKF. 
For nonlinear systems with multidimensional state variables, different state variables affected by 

the model deviation have different degrees, and the changes are random. If multiple fading factors 
are used for real-time adjustment, the estimation results can be more suitable for the operation of the 
real system [14]. Equation.6 is the construction of multiple fading factor matrix. 
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k k k kdiag λ λ λ =  λ ,                                                                           (6) 

where ( )1 1,2, ,i
k i nλ =   is fading factor for each state variable. 

The multiple fading factors quoted in EKF have the following form: 
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( ) ( ) ( ) ( ) ( )T1k k k k k= − − −N V H Q H R ,                                                         (9) 
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where iα  is scale factor, its value depends on the error of the equation corresponding to the state 
variable. The larger the coefficient, the greater the degree of strong tracking. ρ  is forgetting factor, 
its general value is 0.95. 
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where ( )kF  is linearization matrix of state model; ( )kH  is linearization matrix of observation 
model.  

UKF does not require the linearization process, and the calculation of fading factors in the UKF 
does not include the solution of partial derivative matrix [15]. According to the system process noise 
and the observed noise are irrelevant, and the noise covariance matrix is a positive definite 
symmetric matrix, Eq.14 can be derived. 
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According to Eq.9 and Eq.14, we have 
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Similarly, for (10) we have 
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The deformed fading factors reference method combines the multiple fading mechanism and the 

optimization of the reference position, and substituting Eq.15 and Eq.16 into Eq.9 and Eq.10 can 
obtain the multi-fading factor we required for each iteration. Although multi-fading factors increase 
the amount of calculation, they have a good performance in improving the filtering accuracy. 

3. Estimation of Noise Characteristics 
For the estimation of actual system, when the characteristics of the noise are considered as the 

influencing factors, the estimation results will have higher accuracy. The assumption that the 
system's process noise and observed noise are considered as Gaussian white noise will lead to 
inaccurate observations in actual works and even occur filtering divergence. In order to make the 
nonlinear model used in the calculation closer to the real model of the system, the case where the 
mean of the noise is non-zero is taken into consideration [16]. For real-time noise, the estimation of 
noise characteristics should have different weights at different times. Introducing weight coefficients 
to emphasize the importance of adjacent data. 
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where µ  is forgetting factor, and 1µ0 < <  is satisfied. 

Assuming in the weight coefficient, we have 
1

1
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− , the calculation of the time-varying noise 
estimator is as follows: 
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where kq  and kr  represent time-varying estimates of process noise and observed noise 
respectively; kQ  and kR  are the covariance matrices of the two kinds of noises. 

Time-varying noise estimators with fading memory index weighting can forget the stale data at 
earlier times, emphasize the importance of adjacent data and reduce the impact of initial value bias. 
The use of noise estimation at each iteration makes the calculation process cumbersome, so the 
estimator calculation is introduced only when the current time is at a large absolute value of the 
estimated error, otherwise the estimation at the previous time is used. Fig. 1 illustrates the structure 
of the algorithm. 

Predict the value of 
state and observation Status update

Select sample point  
and calculate corresponding weights 

Noise characteristic estimator
Sigma sample point:

Weights：

 
Fig. 1 Block diagram of F-MSTUKF 

4. Simulation Results 
In order to verify the improvement effect of the fading factors and noise estimator on the state and 

observation of nonlinear systems, compare the anti-jamming performance and running time of 
various algorithms, discuss the problem of maneuvering target tracking and analyze the tracking 
error of different filtering algorithms. In terms of the accuracy of the filtering, the root mean squared 
error is used as the evaluation index for the experimental results. The root mean squared error can 
directly measure the deviation between the observed experimental results and the real data, it is 
defined as follows: 
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where ix  and ˆix  are the real position and the estimated position at Monte Carlo simulation 
respectively. The smaller value of RMSE means the higher accuracy of the filtering algorithm. 

4.1 Case 1: Maneuvering Target with Variable Acceleration. 
Establish a maneuvering model of a moving target on a plane and  use a radar to observe it. The 

scanning period of the radar is 2 seconds and the components of the horizontal and vertical axes are 
observed independently. In a certain period of time, the target travels along the longitudinal axis with 
the coordinate position of (2000, 10000) as the starting point. First, the target undergoes a slow turn 
of 90 degrees, the acceleration is 0.075 2m s−⋅ . When the turn is over, the acceleration drops to zero 
and begins a quick turn with an angle of 90 degrees. The acceleration of the second turn is 0.3 2m s−⋅ . 
The motive equation of the moving target is represented by 

( ) ( ) ( )1k k k+ = +X ΦX W .                                                                                    (23) 
Parameters in the equation are defined as follows: 
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where x and y are the coordinates of the target; x  and y  are velocities corresponding to the 
coordinates; x  and y  are accelerations; T  is sampling period of the radar. 

The statistical characteristic of the system noise is unknown. The statistical characteristic of the 
observed noise is known, and the observed noise covariance matrix is represented by 

2= 100 0.01k diag   R .                                                                             (26) 
Mean error of filtering is defined by 
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.                                                                    (27) 

where M  is the number of Monte Carlo simulations; 1,2, ,k N=  , N  is the number of samples. 
After 50 times of Monte Carlo simulations, the tracking effect of the maneuvering target and the 

mean error curve for tracking are shown in Fig. 1 and Fig. 2. When the disturbance noise is added 
during the maneuvering target motion, the error curve has fluctuation. F-MSTUKF can still achieve 
the purpose of tracking before and after the two turns of the target. Compared with F-STUKF, it has 
better ability to cope with state mutations and smaller estimation error. It can be seen from the error 
curves in the two coordinate axes that the second turn has a larger non-error standard deviation than 
the first turn, and the mean error of the stable phase is small. By this kind of filter, the impact of 
maneuvering is small and it can track maneuvering targets better. 
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Fig. 2 Tracking results for maneuvering targets 
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Fig. 3 Mean-error curve in the directions of x-axis and y-axis 

The specific running time of the filtering algorithm can be used as the embodiment of the amount 
of calculation. Changing the position of gradual fading factors avoids the additional calculation of 
STUKF and shorten the time significantly, which makes the time cost of F-STUKF and F-MSTUKF 
close to UKF. The root mean square error of each algorithm is compared in Table 1. Compared with 
the UKF algorithm, the algorithm with strong tracking and fading factor has better accuracy. After 
fast strong tracking UKF simplified fading factors’ reference, the accuracy of the filtering is affected. 
The combination of multiple fading factors and F-STUKF takes into account the two parameters of 
time cost and root mean square error. The tracking accuracy of F-MSTUKF is better than others, 
which is about 38.99% higher than F-STUKF, and only 9.45% increase in time. 

Table 1  Performance of each algorithm in maneuvering target tracking 

Algorithm Time (s) RMSE  
UKF 1.233 1.932 

STUKF 2.419 0.421 
F-STUKF 1.302 0.536 

F-MSTUKF 1.425 0.327 

4.2 Case 2: Abrupt Change of Noise Characteristics. 
The filter target is a variable speed target with two times of change in the observed noise 

characteristics. As shown in Fig. 3, the simulation time is N=100, and the mutation occurs at the time 
of 25 s and 80 s. In the process of filtering, if the original noise statistical model is still used to 
describe the noise characteristics, the error will be increased and the filter will be diverged. As 
shown in Fig. 4, when the time-varying noise estimator is added, the error waveform is smooth, the 
filtering accuracy is improved significantly and the filtering divergence is avoided. Therefore, when 
the system is affected by the change of statistical characteristics of noise, under the filtering 
mechanism with noise estimation can maintain a small estimation error and have better adaptive 
ability to variation of noise. 
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Fig. 4 Position and speed tracking without time-varying noise estimator 
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Fig. 5 Position and speed tracking with time-varying noise estimator 

Table 2 compares the root mean square error before and after the noise estimation, the accuracy is 
improved about 15.79%. Since the calculation of the noise estimator is not referenced every time the 
filter is updated, it is only used when the absolute value of the estimated error is large, so the noise 
estimation has little effect on the time cost of the algorithm. 

Table 2  Comparison of root mean square error of each algorithm 

Algorithm Time (s) RMSE  
UKF 1.325 1.847 

F-MSTUKF 1.433 0.304 
F-MSTUKF with noise estimator 1.469 0.256 

5. Conclusions 
In order to improve the tracking accuracy and operational efficiency of STUKF, the reference 

method of multiple fading factors is improved, which directly affects the prediction of observation 
and covariance matrix. It adjusts the filtering gain in time.The algorithm also uses a time-varying 
noise estimator to estimate noise with unknown statistical properties, updates the noise adaptively to 
reduce the absolute deviation of the tracking results. It emphasizes the importance of the adjacent 
data. Compared with UKF and STUKF, it is shown that the proposed method can estimate the 
motion trajectory of the maneuvering target better. The F-MSTUKF improves the accuracy and 
stability of the filter tracking without increasing the amount of calculation. The combination of 
tracking technology and Kalman filtering is one of the important development directions in the field 
of automatic control. With the continuous improvement of filtering technology and the technical 
follow-up of control theory, its application field will be more extensive. 
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